
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Synthetic Division for Evaluating Polynomials

Wesly Giovano - 13520071

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13520071@std.stei.itb.ac.id

Abstract—Polynomial function is used a lot in many fields, and

most of the time it is needed to be evaluated. As the degree of

polynomial increases, we need a more efficient way to evaluate

high-degree polynomial. Polynomial evaluation can be

approached by brute-force method which is an intuitive method,

however it gives time complexity of O(n²). Another brute-force

method but enhanced one gives a better time complexity of O(n log

n). In this paper, we use divide-and-conquer approach to evaluate

polynomial synthetic division as a method to evaluate polynomial,

and analysis shows it has time complexity of O(n) which is more

efficient than both former methods. Synthetic division method to

evaluate polynomial can be implemented in either recursive or

iterative approach with the idea of alternating between

multiplying the value of indeterminate and adding the next

coefficient.

Keywords—polynomial evaluation; divide and conquer

algorithm; synthetic division

I. INTRODUCTION

Polynomial is one of the most widely-used expression in
solving problems from many fields, ranging from engineering to
finance. For example, aerospace engineers have to determine the
acceleration of a rocket based on variables such as gravitation
and mass, while financiers would use polynomial as a mean to
forecast market trends and make decision based on it.

Sometimes, polynomials are needed to be evaluated for a
large number of variable/indeterminate values. With the method
of solving the arithmetic operations sequentially—also named
as brute-force method—it would be less time-efficient as we
need to calculate the power of the indeterminate repeatedly. One
method is to “memorize” the values for each power of the
indeterminate. However, the method would require memory to
store those values for computational calculation and writing
those values elsewhere before proceeding to the polynomial
evaluation for manual calculation. In this paper, we would
discuss about synthetic division as a mean to evaluating
polynomial in a more efficient way, usable for both manual
calculation and computational calculation.

II. THEORETICAL FRAMEWORK

A. Divide-and-Conquer Algorithm

Divide and conquer is an algorithm design paradigm of
solving a large problem by solving subproblems from the
breakdowns of the initial problem [1]. The approach has three

parts: (1) divide, that is dividing the problem into subproblems,
(2) conquer, that is solving/conquering each of the subproblems
by either solving it directly if it is simple enough to be solved or
dividing it again into smaller subproblems, and (3) combine, that
is combining solutions of all the subproblems into one solution
to the initial problem. Below is the illustration to the approach.

Fig. 1. Illustration to divide-and-conquer algorithm.

Time complexity to the divide-and-conquer algorithm is
generalized as [2]

 𝑇(𝑛) = {
𝑔(𝑛), 𝑛 ≤ 𝑛0
𝑇(𝑛1) + 𝑇(𝑛2) + ⋯+ 𝑇(𝑛𝑟) + 𝑓(𝑛), 𝑛 > 𝑛0

 ()

where:

• 𝑇(𝑛) is the time complexity to solve problem of size 𝑛,

• 𝑇(𝑛𝑖) is the time complexity to solve each of the
subproblems,

• 𝑔(𝑛) is the time complexity to solve a small-enough
subproblem, and

• 𝑓(𝑛) is the time complexity to combine solution of the
subproblems.

Recursive time complexity in the divide-and-conquer

algorithm can be solved with Master Theorem as a shortcut,
which generally is as follows [2].

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

For a monotonically increasing function 𝑇(𝑛) = 𝑎 𝑇 (
𝑛

𝑏
) +

𝑐𝑛𝑑 that satisfies the constraints 𝑎 ≥ 1, 𝑏 ≥ 2, and 𝑐, 𝑑 ≥ 0,
then the non-recursive form of 𝑇(𝑛) in Big-O notation is

 𝑇(𝑛) = {

𝑂(𝑛𝑑), 𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 log 𝑛), 𝑎 = 𝑏𝑑

𝑂(𝑛log𝑏 𝑎), 𝑎 > 𝑏𝑑
 ()

B. Polynomial and Division Algorithm

A function 𝑝 is a polynomial if

 𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 ()

or more compactly,

 𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 (4)

where 𝑛 is a nonnegative integer and 𝑎𝑖 are the coefficients of
the polynomial [3]. The polynomial is said to have a degree of
𝑛.

Arithmetic operations can be applied to polynomials, such as
addition, subtraction, multiplication, and division between two
polynomials. The division algorithm in polynomial operation is

 𝑓(𝑥) = 𝑑(𝑥)𝑞(𝑥) + 𝑟(𝑥) ()

where 𝑓(𝑥) is the dividend, 𝑑(𝑥) is the divisor, 𝑞(𝑥) is the
quotient, and 𝑟(𝑥) is the remainder [3]. If 𝑟(𝑥) = 0 then the
divisor 𝑑(𝑥) is said to divide evenly into the dividend 𝑓(𝑥). The
remainder 𝑟(𝑥) also has the property of having lower degree
than 𝑑(𝑥). Hence, if 𝑑(𝑥) has a degree of 1, 𝑟(𝑥) is a constant.

Two methods exist to solve division problem manually: long
division and synthetic division. The latter is a shortcut for the
former by divisors in form of 𝑥 − 𝑘. Let 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑 and 𝑑(𝑥) = 𝑥 − 𝑘, then the method of synthetic division
is as follows. Note that we are adding terms in the vertical
pattern and multiplying by 𝑘 in the diagonal pattern.

Fig. 2. Method of synthetic division.

III. POLYNOMIAL EVALUATION ALGORITHM

In this paper, we are interested in number of multiplication
but not addition and subtraction since the calculation speed of
multiplication is comparatively slow. Hence, time complexity of

the algorithms only represents multiplication time and does not
include addition and subtraction time.

A. Brute-Force Method

The brute-force method of polynomial evaluation is
evaluating polynomial according to the order of operations such
as PEMDAS rule (parentheses, exponents, multiplications and
divisions, additions and subtractions). Let us the example of the
polynomial 𝑝(𝑥) = 2𝑥3 − 7𝑥2 + 6𝑥 + 2, then the value of
𝑝(3) is as follows with brute-force method.

𝑝(3) = 2(3)3 − 7(3)2 + 6(3) + 2
= 2(3 × 3 × 3) − 7(3 × 3) + 6(3) + 2
= 2(27) − 7(9) + 6(3) + 2
= 54 − 63 + 18 + 2
= 11

The time complexity for this method for a polynomial in
form of one in equation (4) is shown as follows.

(1) Time complexity for calculating power of a number.

 𝑇𝑝𝑜𝑤(𝑛) = 𝑛 ()

(2) Time complexity for evaluating polynomial.

𝑇(𝑛) =∑(1 + 𝑇𝑝𝑜𝑤(𝑖))

𝑛

𝑖=0

=∑(1 + 𝑖)

𝑛

𝑖=0

 𝑇(𝑛) =
1

2
(𝑛 + 1)(𝑛 + 2) ()

From equation (7), we can conclude that the brute-force
method has time complexity of 𝑂(𝑛2).

B. Enhanced Brute-Force Method

The enhanced brute-force method takes the divide-and-
conquer approach on calculating power of a number. Let us
calculate 𝑎𝑛 with mentioned approach [2].

(1) For 𝑛 = 0, 𝑎𝑛 = 1.

(2) For 𝑛 > 0,

a. If 𝑛 is even, then 𝑎𝑛 = 𝑎
𝑛

2 × 𝑎
𝑛

2 .

b. If 𝑛 is odd, then 𝑎𝑛 = 𝑎⌊
𝑛

2
⌋ × 𝑎⌊

𝑛

2
⌋ × 𝑎.

Time complexity for this method is shown as follows.

(1) Time complexity for calculating power of a number.

 𝑇𝑝𝑜𝑤(𝑛) =

{

 0, 𝑛 = 0

𝑇𝑝𝑜𝑤 (
𝑛

2
) + 1, 𝑛 > 0 and 𝑛 is even

𝑇𝑝𝑜𝑤 (⌊
𝑛

2
⌋) + 2, 𝑛 > 0 and 𝑛 is odd

 ()

With the Master Theorem in equation (2), we can transform
equation (8) into

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

 𝑇𝑝𝑜𝑤(𝑛) = 𝑂(log 𝑛) ()

(2) Time complexity for evaluating polynomial.

𝑇(𝑛) =∑(1 + 𝑇𝑝𝑜𝑤(𝑖))

𝑛

𝑖=0

=∑(1 + 𝑂(log 𝑛)

𝑛

𝑖=0

)

 𝑇(𝑛) = 𝑛 × 𝑂(log 𝑛) = 𝑂(𝑛 log𝑛) ()

The enhanced brute-force method is proven better than the
original brute-force method with time complexity of 𝑂(𝑛 log 𝑛).

C. Synthetic Division Method

The synthetic division method uses the remainder of the
polynomial 𝑝(𝑥) divided by 𝑥 − 𝑘 to calculate 𝑝(𝑘) in a
recursive way. This method has also been supported by
polynomial remainder theorem. For example, in Fig. 2, we can

show that 𝑟 = 𝑑 + 𝑘(𝑐 + 𝑘(𝑏 + 𝑘𝑎)) = 𝑎𝑘3 + 𝑏𝑘2 + 𝑐𝑘 + 𝑑.

The divide-and-conquer approach to polynomial evaluation,
i.e., synthetic division method, is illustrated as follows.

Let the polynomial be 𝑝(𝑥) = 𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 +
𝑒𝑥 + 𝑓 and we are to calculate the value of 𝑝(𝑘).

(1) Divide and conquer.

 a b c d e f

 a b c d e f

 a b c d e f

 a b c d e f

 a b c d e f

 a b c d e f

(2) Solve and combine.

 a b c d e f
 𝑣=𝑎 𝑣=𝑏 𝑣=𝑐 𝑣=𝑑 𝑣=𝑒 𝑣=𝑓

 a b c d e f
 𝑣 = 𝑎𝑘 + 𝑏 𝑣=𝑐 𝑣=𝑑 𝑣=𝑒 𝑣=𝑓

 a b c d e f

 𝑣 = 𝑎𝑘2 + 𝑏𝑘 + 𝑐 𝑣=𝑑 𝑣=𝑒 𝑣=𝑓

 a b c d e f
 𝑣 = 𝑎𝑘3 + 𝑏𝑘2 + 𝑐𝑘 + 𝑑 𝑣=𝑒 𝑣=𝑓

 a b c d e f
 𝑣 = 𝑎𝑘4 + 𝑏𝑘3 + 𝑐𝑘2 + 𝑑𝑘 + 𝑒 𝑣=𝑓

 a b c d e f
 𝑣 = 𝑎𝑘5 + 𝑏𝑘4 + 𝑐𝑘3 + 𝑑𝑘2 + 𝑒𝑘 + 𝑓

Generally, the method uses the approach of

 𝑝𝑖(𝑘) = {
𝑎𝑖 , 𝑖 = 0

𝑎𝑖𝑘 + 𝑝𝑖−1(𝑘), 𝑖 > 0
 ()

with the sub-polynomial 𝑝𝑖(𝑥) is defined as

 𝑝𝑖(𝑥) = ∑ 𝑎𝑗𝑥
𝑗𝑖

𝑗=0 ()

and the value of 𝑝(𝑘) is 𝑝𝑛(𝑘).

From equation (11), we can write the time complexity of this
method as

 𝑇(𝑛) = {
0, 𝑛 = 0
1 + 𝑇(𝑛 − 1), 𝑛 > 0

 ()

We can calculate 𝑇(𝑛) in a non-recursive model as follows.

𝑇(𝑛) = 1 + 𝑇(𝑛 − 1)
= 1 + (1 + 𝑇(𝑛 − 2))
= 2 + 𝑇(𝑛 − 2)
= 𝑘 + 𝑇(𝑛 − 𝑘)
= 𝑛

Hence, the asymptotic time complexity of the method is

 𝑇(𝑛) = 𝑂(𝑛) ()

We can infer that the synthetic division method with its
divide-and-conquer approach outperforms the two former
methods.

IV. IMPLEMENTATION OF SYNTHETHIC DIVISION METHOD

FOR EVALUATING POLYNOMIAL

Implementation of the method uses the property that divide-
and-conquer approach is recursive. Let a polynomial 𝑝(𝑥)
having degree of 𝑛 be stored in an array arr of size 𝑛 + 1 and

coefficient of 𝑖-powered indeterminate is stored in the 𝑖-th
element of the array. The implementation follows the piecewise
equation (11).

function subPolyValue (i: integer, arr:

array of integer, k: integer) → integer

 if i = 0 then

 → arr[i]

 else

 → arr[i] * k + subPolyValue(i-1, arr, k)

function evalPoly(arr: array of integer, k:

integer) → integer

 n ← len(arr) - 1

 → subPolyValue(n, arr, k)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Alternative to the recursive approach is the iterative one. The
idea is to iterate the array from the last index to first index while
calculating the value of the sub-polynomial 𝑝𝑖(𝑘). The
implementation for the iterative approach is as follows.

function evalPoly (arr: array of integer, k:

integer) → integer

 n ← len(arr) – 1

 value ← 0

 i traversal [n..0]

 value ← value * k + arr[i]

 → value

V. EXAMPLES OF SYNTHETIC DIVISION METHOD

FOR EVALUATING POLYNOMIAL

A. Manual Evaluation

As synthetic division is originally used in manual fashion,
we try to evaluate two polynomials, one with low degree and
another with higher degree.

1) Polynomial with degree of 3

Let the polynomial be 𝑝(𝑥) = 2𝑥3 − 7𝑥2 + 6𝑥 + 2 and we

want to evaluate the value of 𝑝(3). The synthetic division
method is as follows.

3 2 -7 6 2

 6 -3 9

 2 -1 3 11

From the calculation above, we evaluated the value of 𝑝(3)
to be 11. The synthetic division method only needs 3
multiplications and 3 additions/subtractions, while brute-force
method would need 6 multiplications and 3
additions/subtractions.

2) Polynomial with degree of 7

Let the polynomial be 𝑝(𝑥) = −𝑥7 + 12𝑥5 − 4𝑥4 +
27𝑥2 + 12𝑥 and we want to evaluate the value of 𝑝(4). The
synthetic division method is as follows.

4 -1 0 12 -4 0 27 12 0

 -4 -16 -16 -80 -320 -1172 -1160

 -1 -4 -4 -20 -80 -293 -1160 -4640

From the calculation above, we evaluated the value of 𝑝(4)
to be -4640. The synthetic division method only needs 7
multiplications and 7 additions/subtractions, while brute-force
method would need 18 multiplications and 4
additions/subtractions.

B. Computational Evaluation

To test the claim that synthetic division method is more
efficient than both brute-force methods computationally, we
implemented three of the methods in Python 3.10 and then tested
the performance of each method on six cases with random
coefficients and random 𝑘 value in calculating 𝑝(𝑘).

The original brute-force method is implemented as follows.

def evalPoly1(arr, k):

 val = 0

 n = len(arr)-1

 for i in range(len(arr)):

 temp = arr[i]

 for j in range(n-i):

 temp = temp * k

 val += temp

 return val

The enhanced brute-force method is implemented as
follows.

def power(a, n):

 if n==0:

 return 1

 else:

 if n%2==0:

 x = power(a, n//2)

 return x*x

 else:

 x = power(a, n//2)

 return x*x*a

def evalPoly2(arr, k):

 val = 0

 n = len(arr)-1

 for i in range(len(arr)):

 val += arr[i] * power(k, n-i)

 return val

The synthetic division method is implemented using the
iterative approach as follows.

def evalPoly3(arr, k):

 val = 0

 n = len(arr)-1

 for i in range(len(arr)):

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

 val = val * k + arr[i]

 return val

1) Polynomial with degree of 0

First, we tested the performance of the methods given that

the polynomial has a degree of 0, in other word, a constant.

Number of iterations: 100000

Polynomial with degree of 0

1. Brute-force method: 44.02 ms

2. Enhanced brute-force method: 44.02 ms

3. Synthetic division method: 33.02 ms

The result shows that synthetic division method is slightly
faster than the other methods by approximately only 25%.

2) Polynomial with degree of 5

Next, we tested the performance of the methods by using a

polynomial with degree of 5, which is a standard polynomial
used in everyday life.

Number of iterations: 100000

Polynomial with degree of 5

1. Brute-force method: 186.05 ms

2. Enhanced brute-force method: 287.07 ms

3. Synthetic division method: 64.01 ms

The result shows that the synthetic division method is about
200% faster than the original brute-force-method, and an
anomaly of enhanced brute-force method being the slowest
happens.

3) Polynomial with degree of 20

We also tested the performance of the methods by using a

polynomial with a degree of 20 which apparently yielded similar
result to the test with degree of 5: synthetic division method is
six times as fast as the original brute-force method, and
enhanced brute-force method being the slowest.

Number of iterations: 5000

Polynomial with degree of 20

1. Brute-force method: 59.01 ms

2. Enhanced brute-force method: 79.02 ms

3. Synthetic division method: 10.0 ms

4) Polynomial with degree of 100

Next, we tested the performances on a polynomial with

degree of 100.

Number of iterations: 1000

Polynomial with degree of 100

1. Brute-force method: 272.07 ms

2. Enhanced brute-force method: 116.99 ms

3. Synthetic division method: 11.01 ms

The difference between both brute-force methods and
synthetic division method is becoming apparent. Synthetic
division method is about 25 times as fast as original brute-force
method and 10 times as fast as enhanced one.

5) Polynomial with degree of 1000

We jumped to test evaluating a polynomial with a degree of

1000.

Number of iterations: 100

Polynomial with degree of 1000

1. Brute-force method: 5984.02 ms

2. Enhanced brute-force method: 401.51 ms

3. Synthetic division method: 28.99 ms

The result shows that the original brute-force method is
significantly slower, taking up to six seconds while enhanced
brute-force method took 1/15 of it and synthetic division method
only took about 1/200 of it.

6) Polynomial with degree of 5000

Lastly, we tested the performances by using a polynomial

with degree of 5000.

Number of iterations: 20

Polynomial with degree of 5000

1. Brute-force method: 105118.09 ms

2. Enhanced brute-force method: 4337.78 ms

3. Synthetic division method: 103.04 ms

The result shows the synthetic method is indeed the fastest
among others, being approximately 43 times as fast as enhanced
brute-force method and 1000 times as fast as original brute-force
method.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

VI. CONCLUSION

From the study, it was affirmed that divide-and-conquer
algorithm can be applied to evaluating polynomial in form of
synthetic division method. The synthetic division method is
significantly more efficient that the two other methods, and can
be applied manually or computationally.

VIDEO LINK AT YOUTUBE

The explanation video of this paper can be found on the
following link: https://youtu.be/7KDm5lxdINQ.

ACKNOWLEDGMENT

The author would like to express gratitude to friends who
provided help and supports during the writing of this paper.
Author would also like to thank Dr. Nur Ulfa Maulidevi, S.T.,
M.Sc. as class lecturer for IF2211 Algorithm Strategies course
for the spirit and determination to educate students with
enthusiasm.

REFERENCES

[1] A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd ed.
New Jersey: Addison-Wesley, 2012, ch. 5.

[2] R. Munir, School of Electrical Engineering and Informatics, Bandung
Institute of Technology, lecture slide: “Algoritma divide and conquer”,
2021.

[3] R. Larson, Algebra and Trigonometry, 8th ed. California: Brooks/Cole,
2011, ch. 3.

STATEMENT

Hereby I state that this paper is my own writing and not a
copy, translation, nor plagiarism of others’ works.

Bandung, 20 May 2022

Wesly Giovano (13520071)

https://youtu.be/7KDm5lxdINQ

