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Abstract—Polynomial function is used a lot in many fields, and 

most of the time it is needed to be evaluated. As the degree of 

polynomial increases, we need a more efficient way to evaluate 

high-degree polynomial. Polynomial evaluation can be 

approached by brute-force method which is an intuitive method, 

however it gives time complexity of O(n²). Another brute-force 

method but enhanced one gives a better time complexity of O(n log 

n). In this paper, we use divide-and-conquer approach to evaluate 

polynomial synthetic division as a method to evaluate polynomial, 

and analysis shows it has time complexity of O(n) which is more 

efficient than both former methods. Synthetic division method to 

evaluate polynomial can be implemented in either recursive or 

iterative approach with the idea of alternating between 

multiplying the value of indeterminate and adding the next 

coefficient.  

Keywords—polynomial evaluation; divide and conquer 

algorithm; synthetic division 

I.  INTRODUCTION 

Polynomial is one of the most widely-used expression in 
solving problems from many fields, ranging from engineering to 
finance. For example, aerospace engineers have to determine the 
acceleration of a rocket based on variables such as gravitation 
and mass, while financiers would use polynomial as a mean to 
forecast market trends and make decision based on it. 

Sometimes, polynomials are needed to be evaluated for a 
large number of variable/indeterminate values. With the method 
of solving the arithmetic operations sequentially—also named 
as brute-force method—it would be less time-efficient as we 
need to calculate the power of the indeterminate repeatedly. One 
method is to “memorize” the values for each power of the 
indeterminate. However, the method would require memory to 
store those values for computational calculation and writing 
those values elsewhere before proceeding to the polynomial 
evaluation for manual calculation. In this paper, we would 
discuss about synthetic division as a mean to evaluating 
polynomial in a more efficient way, usable for both manual 
calculation and computational calculation. 

II. THEORETICAL FRAMEWORK 

A. Divide-and-Conquer Algorithm 

Divide and conquer is an algorithm design paradigm of 
solving a large problem by solving subproblems from the 
breakdowns of the initial problem [1]. The approach has three 

parts: (1) divide, that is dividing the problem into subproblems, 
(2) conquer, that is solving/conquering each of the subproblems 
by either solving it directly if it is simple enough to be solved or 
dividing it again into smaller subproblems, and (3) combine, that 
is combining solutions of all the subproblems into one solution 
to the initial problem. Below is the illustration to the approach. 

 

Fig. 1. Illustration to divide-and-conquer algorithm. 

Time complexity to the divide-and-conquer algorithm is 
generalized as [2] 

 𝑇(𝑛) = {
𝑔(𝑛),                                                             𝑛 ≤ 𝑛0
𝑇(𝑛1) + 𝑇(𝑛2) + ⋯+ 𝑇(𝑛𝑟) + 𝑓(𝑛),   𝑛 > 𝑛0

 () 

where: 

• 𝑇(𝑛) is the time complexity to solve problem of size 𝑛, 

• 𝑇(𝑛𝑖) is the time complexity to solve each of the 
subproblems, 

• 𝑔(𝑛) is the time complexity to solve a small-enough 
subproblem, and 

• 𝑓(𝑛) is the time complexity to combine solution of the 
subproblems. 
 
Recursive time complexity in the divide-and-conquer 

algorithm can be solved with Master Theorem as a shortcut, 
which generally is as follows [2]. 
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For a monotonically increasing function 𝑇(𝑛) = 𝑎 𝑇 (
𝑛

𝑏
) +

𝑐𝑛𝑑  that satisfies the constraints 𝑎 ≥ 1, 𝑏 ≥ 2, and 𝑐, 𝑑 ≥ 0, 
then the non-recursive form of 𝑇(𝑛) in Big-O notation is 

  𝑇(𝑛) = {

𝑂(𝑛𝑑),            𝑎 < 𝑏𝑑

𝑂(𝑛𝑑 log 𝑛), 𝑎 = 𝑏𝑑

𝑂(𝑛log𝑏 𝑎),     𝑎 > 𝑏𝑑
 () 

B. Polynomial and Division Algorithm 

A function 𝑝 is a polynomial if 

 𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 () 

or more compactly,  

 𝑝(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0   (4) 

where 𝑛 is a nonnegative integer and 𝑎𝑖  are the coefficients of 
the polynomial [3]. The polynomial is said to have a degree of 
𝑛. 

Arithmetic operations can be applied to polynomials, such as 
addition, subtraction, multiplication, and division between two 
polynomials. The division algorithm in polynomial operation is 

 𝑓(𝑥) = 𝑑(𝑥)𝑞(𝑥) + 𝑟(𝑥) () 

where 𝑓(𝑥) is the dividend, 𝑑(𝑥) is the divisor, 𝑞(𝑥) is the 
quotient, and 𝑟(𝑥) is the remainder [3]. If 𝑟(𝑥)  =  0 then the 
divisor 𝑑(𝑥) is said to divide evenly into the dividend 𝑓(𝑥). The 
remainder 𝑟(𝑥) also has the property of having lower degree 
than 𝑑(𝑥). Hence, if 𝑑(𝑥) has a degree of 1, 𝑟(𝑥) is a constant. 

Two methods exist to solve division problem manually: long 
division and synthetic division. The latter is a shortcut for the 
former by divisors in form of 𝑥 − 𝑘. Let 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑 and 𝑑(𝑥) = 𝑥 − 𝑘, then the method of synthetic division 
is as follows. Note that we are adding terms in the vertical 
pattern and multiplying by 𝑘 in the diagonal pattern. 

 

Fig. 2. Method of synthetic division. 

III. POLYNOMIAL EVALUATION ALGORITHM 

In this paper, we are interested in number of multiplication 
but not addition and subtraction since the calculation speed of 
multiplication is comparatively slow. Hence, time complexity of 

the algorithms only represents multiplication time and does not 
include addition and subtraction time. 

A. Brute-Force Method 

The brute-force method of polynomial evaluation is 
evaluating polynomial according to the order of operations such 
as PEMDAS rule (parentheses, exponents, multiplications and 
divisions, additions and subtractions). Let us the example of the 
polynomial 𝑝(𝑥) = 2𝑥3 − 7𝑥2 + 6𝑥 + 2, then the value of 
𝑝(3) is as follows with brute-force method. 

𝑝(3) = 2(3)3 − 7(3)2 + 6(3) + 2 
= 2(3 × 3 × 3) − 7(3 × 3) + 6(3) + 2 
= 2(27) − 7(9) + 6(3) + 2 
= 54 − 63 + 18 + 2 
= 11 

The time complexity for this method for a polynomial in 
form of one in equation (4) is shown as follows. 

(1) Time complexity for calculating power of a number. 

 𝑇𝑝𝑜𝑤(𝑛) = 𝑛  () 

(2) Time complexity for evaluating polynomial. 

𝑇(𝑛) =∑(1 + 𝑇𝑝𝑜𝑤(𝑖))

𝑛

𝑖=0

=∑(1 + 𝑖)

𝑛

𝑖=0

 

 𝑇(𝑛) =
1

2
(𝑛 + 1)(𝑛 + 2) () 

From equation (7), we can conclude that the brute-force 
method has time complexity of 𝑂(𝑛2). 

B. Enhanced Brute-Force Method 

The enhanced brute-force method takes the divide-and-
conquer approach on calculating power of a number. Let us 
calculate 𝑎𝑛 with mentioned approach [2]. 

(1) For 𝑛 = 0, 𝑎𝑛 = 1. 

(2) For 𝑛 > 0, 

a. If 𝑛 is even, then 𝑎𝑛 = 𝑎
𝑛

2 × 𝑎
𝑛

2 . 

b. If 𝑛 is odd, then 𝑎𝑛 = 𝑎⌊
𝑛

2
⌋ × 𝑎⌊

𝑛

2
⌋ × 𝑎. 

 

Time complexity for this method is shown as follows. 

(1) Time complexity for calculating power of a number. 

 𝑇𝑝𝑜𝑤(𝑛) =

{
 

 
 0,                         𝑛 = 0                            

𝑇𝑝𝑜𝑤 (
𝑛

2
) + 1,     𝑛 > 0 and 𝑛 is even  

𝑇𝑝𝑜𝑤 (⌊
𝑛

2
⌋) + 2, 𝑛 > 0 and 𝑛 is odd   

  () 

With the Master Theorem in equation (2), we can transform 
equation (8) into 
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 𝑇𝑝𝑜𝑤(𝑛) = 𝑂(log 𝑛) () 

(2) Time complexity for evaluating polynomial. 

𝑇(𝑛) =∑(1 + 𝑇𝑝𝑜𝑤(𝑖))

𝑛

𝑖=0

=∑(1 + 𝑂(log 𝑛)

𝑛

𝑖=0

) 

 𝑇(𝑛) = 𝑛 × 𝑂(log 𝑛) = 𝑂(𝑛 log𝑛) () 

The enhanced brute-force method is proven better than the 
original brute-force method with time complexity of 𝑂(𝑛 log 𝑛). 

C. Synthetic Division Method 

The synthetic division method uses the remainder of the 
polynomial 𝑝(𝑥) divided by 𝑥 − 𝑘 to calculate 𝑝(𝑘) in a 
recursive way. This method has also been supported by 
polynomial remainder theorem. For example, in Fig. 2, we can 

show that 𝑟 = 𝑑 + 𝑘(𝑐 + 𝑘(𝑏 + 𝑘𝑎)) = 𝑎𝑘3 + 𝑏𝑘2 + 𝑐𝑘 + 𝑑. 

The divide-and-conquer approach to polynomial evaluation, 
i.e., synthetic division method, is illustrated as follows. 

Let the polynomial be 𝑝(𝑥) = 𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 +
𝑒𝑥 + 𝑓 and we are to calculate the value of 𝑝(𝑘). 

 

(1) Divide and conquer. 

 a  b  c  d  e  f  

             
 a  b  c  d  e  f  

             
 a  b  c  d  e  f  

             
 a  b  c  d  e  f  

             
 a  b  c  d  e  f  

             
 a  b  c  d  e  f  

 

(2) Solve and combine. 

 a  b  c  d  e  f  
 𝑣=𝑎  𝑣=𝑏  𝑣=𝑐  𝑣=𝑑  𝑣=𝑒  𝑣=𝑓  
             
 a  b  c  d  e  f  
 𝑣 = 𝑎𝑘 + 𝑏  𝑣=𝑐  𝑣=𝑑  𝑣=𝑒  𝑣=𝑓  
             
 a  b  c  d  e  f  

 𝑣 = 𝑎𝑘2 + 𝑏𝑘 + 𝑐  𝑣=𝑑  𝑣=𝑒  𝑣=𝑓  
             
 a  b  c  d  e  f  
 𝑣 = 𝑎𝑘3 + 𝑏𝑘2 + 𝑐𝑘 + 𝑑  𝑣=𝑒  𝑣=𝑓  
             
 a  b  c  d  e  f  
 𝑣 = 𝑎𝑘4 + 𝑏𝑘3 + 𝑐𝑘2 + 𝑑𝑘 + 𝑒  𝑣=𝑓  
             
 a  b  c  d  e  f  
 𝑣 = 𝑎𝑘5 + 𝑏𝑘4 + 𝑐𝑘3 + 𝑑𝑘2 + 𝑒𝑘 + 𝑓  

Generally, the method uses the approach of 

 𝑝𝑖(𝑘) = {
𝑎𝑖 ,                         𝑖 = 0

𝑎𝑖𝑘 + 𝑝𝑖−1(𝑘), 𝑖 > 0
 () 

with the sub-polynomial 𝑝𝑖(𝑥) is defined as 

 𝑝𝑖(𝑥) = ∑ 𝑎𝑗𝑥
𝑗𝑖

𝑗=0  () 

and the value of 𝑝(𝑘) is 𝑝𝑛(𝑘). 

From equation (11), we can write the time complexity of this 
method as 

 𝑇(𝑛) = {
0,                        𝑛 = 0
1 + 𝑇(𝑛 − 1), 𝑛 > 0

 () 

We can calculate 𝑇(𝑛) in a non-recursive model as follows. 

𝑇(𝑛) = 1 + 𝑇(𝑛 − 1) 
= 1 + (1 + 𝑇(𝑛 − 2)) 
= 2 + 𝑇(𝑛 − 2) 
= 𝑘 + 𝑇(𝑛 − 𝑘) 
= 𝑛 

Hence, the asymptotic time complexity of the method is 

 𝑇(𝑛) = 𝑂(𝑛) ()  

We can infer that the synthetic division method with its 
divide-and-conquer approach outperforms the two former 
methods. 

IV. IMPLEMENTATION OF SYNTHETHIC DIVISION METHOD  

FOR EVALUATING POLYNOMIAL 

Implementation of the method uses the property that divide-
and-conquer approach is recursive. Let a polynomial 𝑝(𝑥) 
having degree of 𝑛 be stored in an array arr of size 𝑛 + 1 and 

coefficient of 𝑖-powered indeterminate is stored in the 𝑖-th 
element of the array. The implementation follows the piecewise 
equation (11). 

function subPolyValue (i: integer, arr: 

array of integer, k: integer) → integer 

  if i = 0 then 

    → arr[i] 

  else 

    → arr[i] * k + subPolyValue(i-1, arr, k) 

 

function evalPoly(arr: array of integer, k: 

integer) → integer 

  n ← len(arr) - 1 

  → subPolyValue(n, arr, k) 
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Alternative to the recursive approach is the iterative one. The 
idea is to iterate the array from the last index to first index while 
calculating the value of the sub-polynomial 𝑝𝑖(𝑘). The 
implementation for the iterative approach is as follows. 

function evalPoly (arr: array of integer, k: 

integer) → integer 

  n ← len(arr) – 1 

  value ← 0 

  i traversal [n..0] 

    value ← value * k + arr[i]  

  → value   

 

V. EXAMPLES OF SYNTHETIC DIVISION METHOD  

FOR EVALUATING POLYNOMIAL 

A. Manual Evaluation 

As synthetic division is originally used in manual fashion, 
we try to evaluate two polynomials, one with low degree and 
another with higher degree. 

1) Polynomial with degree of 3 

 
Let the polynomial be 𝑝(𝑥) = 2𝑥3 − 7𝑥2 + 6𝑥 + 2 and we 

want to evaluate the value of 𝑝(3). The synthetic division 
method is as follows. 

3 2 -7 6 2 

  6 -3 9 

 2 -1 3 11 

From the calculation above, we evaluated the value of 𝑝(3) 
to be 11. The synthetic division method only needs 3 
multiplications and 3 additions/subtractions, while brute-force 
method would need 6 multiplications and 3 
additions/subtractions. 

 

2) Polynomial with degree of 7 
 

Let the polynomial be 𝑝(𝑥) = −𝑥7 + 12𝑥5 − 4𝑥4 +
27𝑥2 + 12𝑥 and we want to evaluate the value of 𝑝(4). The 
synthetic division method is as follows. 

4 -1 0 12 -4 0 27 12 0 

  -4 -16 -16 -80 -320 -1172 -1160 

 -1 -4 -4 -20 -80 -293 -1160 -4640 

From the calculation above, we evaluated the value of 𝑝(4) 
to be -4640. The synthetic division method only needs 7 
multiplications and 7 additions/subtractions, while brute-force 
method would need 18 multiplications and 4 
additions/subtractions. 

B. Computational Evaluation 

To test the claim that synthetic division method is more 
efficient than both brute-force methods computationally, we 
implemented three of the methods in Python 3.10 and then tested 
the performance of each method on six cases with random 
coefficients and random 𝑘 value in calculating 𝑝(𝑘). 

The original brute-force method is implemented as follows. 

def evalPoly1(arr, k): 

    val = 0 

    n = len(arr)-1 

    for i in range(len(arr)): 

        temp = arr[i] 

        for j in range(n-i): 

            temp = temp * k 

        val += temp 

    return val 

 

The enhanced brute-force method is implemented as 
follows. 

def power(a, n): 

    if n==0: 

        return 1 

    else: 

        if n%2==0: 

            x = power(a, n//2) 

            return x*x 

        else: 

            x = power(a, n//2) 

            return x*x*a 

 

def evalPoly2(arr, k): 

    val = 0 

    n = len(arr)-1 

    for i in range(len(arr)): 

        val += arr[i] * power(k, n-i) 

    return val 

 

The synthetic division method is implemented using the 
iterative approach as follows. 

def evalPoly3(arr, k): 

    val = 0 

    n = len(arr)-1 

    for i in range(len(arr)): 
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        val = val * k + arr[i]         

    return val 

 

1) Polynomial with degree of 0 

 
First, we tested the performance of the methods given that 

the polynomial has a degree of 0, in other word, a constant. 

Number of iterations: 100000 

Polynomial with degree of 0 

1. Brute-force method:          44.02 ms 

2. Enhanced brute-force method: 44.02 ms 

3. Synthetic division method:   33.02 ms 

 

The result shows that synthetic division method is slightly 
faster than the other methods by approximately only 25%. 

 

2) Polynomial with degree of 5 

 
Next, we tested the performance of the methods by using a 

polynomial with degree of 5, which is a standard polynomial 
used in everyday life. 

Number of iterations: 100000 

Polynomial with degree of 5 

1. Brute-force method:          186.05 ms 

2. Enhanced brute-force method: 287.07 ms 

3. Synthetic division method:   64.01 ms 

 

The result shows that the synthetic division method is about 
200% faster than the original brute-force-method, and an 
anomaly of enhanced brute-force method being the slowest 
happens. 

 

3) Polynomial with degree of 20 

 
We also tested the performance of the methods by using a 

polynomial with a degree of 20 which apparently yielded similar 
result to the test with degree of 5: synthetic division method is 
six times as fast as the original brute-force method, and 
enhanced brute-force method being the slowest. 

 

Number of iterations: 5000 

Polynomial with degree of 20 

1. Brute-force method:          59.01 ms 

2. Enhanced brute-force method: 79.02 ms 

3. Synthetic division method:   10.0 ms 

 

4) Polynomial with degree of 100 

 
Next, we tested the performances on a polynomial with 

degree of 100. 

Number of iterations: 1000 

Polynomial with degree of 100 

1. Brute-force method:          272.07 ms 

2. Enhanced brute-force method: 116.99 ms 

3. Synthetic division method:   11.01 ms 

 

The difference between both brute-force methods and 
synthetic division method is becoming apparent. Synthetic 
division method is about 25 times as fast as original brute-force 
method and 10 times as fast as enhanced one. 

 

5) Polynomial with degree of 1000 

 
We jumped to test evaluating a polynomial with a degree of 

1000. 

Number of iterations: 100 

Polynomial with degree of 1000 

1. Brute-force method:          5984.02 ms 

2. Enhanced brute-force method: 401.51 ms 

3. Synthetic division method:   28.99 ms 

 

The result shows that the original brute-force method is 
significantly slower, taking up to six seconds while enhanced 
brute-force method took 1/15 of it and synthetic division method 
only took about 1/200 of it. 

 

6) Polynomial with degree of 5000 

 
Lastly, we tested the performances by using a polynomial 

with degree of 5000. 

Number of iterations: 20 

Polynomial with degree of 5000 

1. Brute-force method:          105118.09 ms 

2. Enhanced brute-force method: 4337.78 ms 

3. Synthetic division method:   103.04 ms 

  

The result shows the synthetic method is indeed the fastest 
among others, being approximately 43 times as fast as enhanced 
brute-force method and 1000 times as fast as original brute-force 
method. 
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VI. CONCLUSION 

From the study, it was affirmed that divide-and-conquer 
algorithm can be applied to evaluating polynomial in form of 
synthetic division method. The synthetic division method is 
significantly more efficient that the two other methods, and can 
be applied manually or computationally. 

VIDEO LINK AT YOUTUBE 

The explanation video of this paper can be found on the 
following link: https://youtu.be/7KDm5lxdINQ. 
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